as4c
454

Niklaus ‘vimja’ Hofer
niklaus@mykolab.ch

7033 7d74

6570 0 7460
7461 5002
6567 6d6e

» |T student at BFH

» Specialisation in Infosec
» | have been working with Blockchain Technology for 1.5 years now
» Writing my Bachelor thesis on the analysis of the Bitcoin Blockchain

» Member of the LugBE
» Founding member of the Chaostreff Bern

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Disclaimer

| am not associated with any Blockchain related company or organisation

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Content |

State transition systems
General concepts
Double-spend

Concepts of a Blockchain
Concept 1: Public ledger
Concept 2: Blocks
Double spend on Blockchains

Blockchain
POW and mining
Solving double spend
Implementing POW
The Bitcoin Blockchain
The structure of a block
The structure of transactions
Light clients
Simplified Payment Verification

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LContent

With this presentation, | want to tell you not only how Blockchains work, but
also why they work the way they do and why the ideas and concepts are
robust enough.

Content Il

Pruning client

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

0~

Section 1

State transition systems

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Subsection 1

General concepts

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

What is a state-transition system

A State-transition-system consists of two elements:
» State
» Transition

A transition brings the system from one state to the next one

transition

State, “— Statepg

| N\

This works over and over again

transition,, transition transition transition,
State, """ Stateg — © Statec — Statep 50" .

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

State-transition applied to financial systems

We can map virtually any financial system to a state-transition system:
» Banks (especially electronic payments)
» Cash
The mapping looks something like this:
State Collection of all accounts
Account Owner and associated amount
Transition Transaction (Moving value from one account to another)
(Also works for other systems of ownership. Especially estate.)

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Showcase

State A

Owner: Alice
Balance: 5.0

Owner: Bob

Balance: 23.0

Owner: Qinn
Balance: 42.0

H

Transition
From: Bob
To: Qinn

Amount: 3

State B

Owner: Alice
Balance: 5.0

Owner: Bob

Balance: 20.0

Owner: Qinn
Balance: 45.0

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LState transition systems
L General concepts
L Showcase

Here we have an example of a (monetary) base-transition system. "State A"
is the collection of all accounts. The transition is a transaction that transfers
"3" from Bob to Qinn. As a result of this transaction, the system transitions
from "State A" into "State B".

State-transition without states

The states are not actually needed. It is enough if (an empty) start state and all transitions
are known:

Series of transactions

transition, transitiong transition., transitions transition.,
Statey ~ — — — = ... = Statey
State B
e EE—— >» Owner: Edward > >
Initial state Transition State A Transition Balance: 321.0 Transition Transition
From: <coinbase> From: <coinbase> From: Edward From: <coinbase>
Owner: Edward Owner: Bob
<empty> To: Edward To: Bob To: Bob To: Luke
l pty I amount: 321.0 Balance: 321.0 amount: 42.0 Balance: 42.0 amount: 23.0 amount: 5.0
State D

Owner: Edward
Balance: 298.0

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LState transition systems

L—General concepts
LState—transition without states e R
=
EE
E=D

Having an (initial) state, we can apply transitions to form new states. When
we have a number of transitions to apply, we actually don’t have to remember
each of the states created by those transitions. Instead we can apply them all
to get the final state directly.

Coinbase, | should probably mention, is the source of the money. This is how
new value is added to the system. In the case of the Swiss Financial system,
the coinbase would be something like new money printed by the Schweizer
Nationalbank.

Subsection 2

Double-spend

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Consensus

» Consensus is very important
» Before every payment, all parties need to agree on the current state!
» The reason for this: double spend

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LState transition systems
- Double-spend
—Consensus

Consensus: All parties of the system agree on the state of the system. | will
now show how the system can be exploited if the parties can’t agree on a
state.

Double spend

» To spend the same money twice
» Obviously malicious
» Well known attack in the Bitcoin world

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Double spend money example
>
>
»
>

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

| have CHF 1000.-

2 B has for sale a cool bicycle for CHF 930.-
draemmli has for sale an old computer for CHF 750.-
| want to buy both!

Example: 2_B’s view

State A

Owner: vimja
Balance: 1000

d

Owner: draemmli
Balance: X

Owner: 2_B
Balance: Y
N————

—>

Transition

From: vimja

To: 2 B
Amount: 930.0

State B

Owner: vimja
Balance: 70

i

Owner: draemmli
Balance: X

Owner: 2_B
Balance: Y+930
———

2_B has gotten the money. He now gives me the bicycle.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LState transition systems
- Double-spend
LExample: 2_B’s view

| make a transaction, to transfer the 930 to 2_B. This results in a new state of
the system. In this new state, 2_B has received the money from me. Since he
has received the money, he hands over the bicycle.

Example: draemmli’s view

» draemmli does not know about the transaction from me to 2_B

» No one told him

» He still thinks the state looks like this:
State A

Owner: vimja —) Owner: vimja
Balance: 250

Balance: 1000 .
Transition

State B'

Owner: draemmli
Balance: X+750

From: vimja

Owner: draemmli
Balance: X To: draemmli

Amount: 750.0

Owner: 2_B
Balance: Y

Owner: 2_B
Balance: Y

G

G

draemmli has gotten the moeny. He now gives me the computer.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LState transition systems
- Double-spend

LExample: draemmli’s view

Let’s imagine draemmli never learned about the previous transaction | made
to 2_B. draemmli still thinks | have 1000 on my account. He will happily
accept my transaction of 750 onto his account and once he’s received the
money, | get the computer.

Example: problem

We now have a problem: | just spent the same money twice
2 B and draemmli do not agree on the state
Their views on the state of the system are incompatible

This breaks the system:

» Possibility to spend infinite amounts of money
» People can’t trade with each other

vV Yy vy

Before we look at a possible solution, let’s consider another example.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Double spend estate example |

I’'m selling an estate at the Lake of Thun:
» At 14 pm | meet with Markus
» | sell him the estate, he gets a receipt
» At 15 pm | meet with draemmli
» | sell him the estate, he gets a receipt
| just double spent my estate:
» | got the money twice
» They both have a receipt
» They can’t both own the same estate!

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Double spend estate example |

The estate world has a simple solution for this:
» Registry of deeds (Grundbuchamt)
» A central authority
» That central authority controls the state of the system

» Every time an estate is sold (a transition is made), it has to be done via the registry of
deeds

» For each transition, the central authority performs certain checks to make sure the
transition is compatible with the current state and either accepts or rejects it

That way, everybody can agree on a certain state and that state is always valid.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Solutions for monetary systems

Requirements:

» All parties need to agree on the current state
» All parties need to agree on whether a transition is valid
Currently, there are two ways of achieving this:

Central authority

»
>
>

Cash

vvyyy

Banks serve as central authorities
They control the state and all transitions
This is always the case for modern day money transfers

Has been around for a long time
Security results from it being hard to copy
Decentralized
Does not work in the digital age
» Computers are AMAZING at copying bytes ;)

Both of these solve our example from earlier. Both of them are in use. Both work!

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LState transition systems
LDouble-spend
L Solutions for monetary systems

The same solution that worked for the estate system, a central authority
controlling the state, can also work for monetary systems. Here banks control
the state of the system.

Cash on the other hand does not need a central authority to control the state.
Instead the state is secured by physics - | can only spend a coin once and it's
hard to copy the coin.

Section 2

Concepts of a Blockchain

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain

Concepts of a Blockchain

| will introduce three important concepts of a Blockchain

After each concept, we will look at how far we've come, what works, what does not work yet

e Then we will add yet another concept to fix some of the problems
Only by adding the third concept (POW) we will get a proper Blockchain

A third solution

Blockchains can serve as a third solution for the same problem. It is an internet age
solution. It provides these (amazing) properties:

No central authority

Parties do not need to trust each other

Parties need no information on who is participating

... not even any information on how many others are participating

And still they can all agree on a state

vV v.v. v .Yy

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Subsection 1

Concept 1: Public ledger

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

» We publish all transactions
» We define the current state as: All transactions applied on an empty state
» Valid transactions only of course

Empty (start) state

/ . E] Current state

P

0O — 0O 0O L
@DHDﬁD[jD /
000 Yg- o

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain

LConcept 1: Public ledger e o
L Idea 0 0
[m]

By applying all transactions to the initial state, we get the current state of the
system.

Problems

» What order do we apply the transactions in?
» Network is probably not in sync
» So we can not really agree on a state after all
» What happens on double-spends?
» We would need to collectively decide which of the two transactions we accept

| Irﬂmpatible!@ . —

., — 4. - H[:]\

C [j’[j_@? Q % [:]_»DH/State??
| O () O 0 O O O

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain
LConcept 1: Public ledger - W e
L Problems oot

We can’t actually decide on a state. There are too many problems. So
clearly, this concept on it's own is useless. It does not work at all. So we need
to add the second concept...

Subsection 2

Concept 2: Blocks

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Blocks

v

We group the transactions into blocks
Blocks depend on one-another

Blocks have to meet certain criteria:

» All transactions within the block must be valid

» Transactions within the block have to be compatible with one another

» Transactions within the block have to be compatible with transactions in earlier blocks
Anyone can form a new block at any time

We define the current state as: All transactions within the longest branch of blocks
applied on an empty state

» Transactions only become part of the state once they are inside a block

v

v

v

v

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Blocks (visualized)

<«— (Empty) intial state

Current state

Block #1

Block #2

2016-04-27

LConcepts of a Blockchain

oty) intial stat
Block #2

fock

m}

LConcept 2: Blocks

O
L Blocks (visualized) s

71

O
a

Gﬁ@@

Sl

Loose transactions are not part of the state. The state is at the end of the last
block. Only when a new block containing the transactions is formed, will they

become part of the state.

In case a new block is created but does still not include a certain transaction,
that specific transaction will not be part of the state. Only when a transaction

is included in a block is it part of the state.

Block chain

There is a fault in that system we have to eliminate though...

E] D@,‘.@;‘;epen E al
O ™-gjLa 0

Block #n Block #n+1

095285

O=815
0-0 |00 ¢

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain
LConcept 2: Blocks
LBlock chain

So far, we have numbered the blocks to determine their order. But if there are
two blocks that both have the same number but different content, a problem
appears. In the image above it's not immediately clear which of the blocks
"n+1" the block "n+2" depends on. Only when we look inside the block "n+2"
it becomes clear that it contains transactions (the green ones) that depend on
the original green transaction. This is tedious and much more complicated
examples are easily imagined.

So numbering the blocks is not a good solution. We need a way to better
express the dependencies of blocks.

Block chain

There is a fault in that system we have to eliminate though...

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain
LConcept 2: Blocks
LBlock chain

As a solution, each block points to it's previous block/references the previous
block. This reference is distinct and thus it is now possible to tell exactly what
block a block depends on.

Each block can only depend on exactly one prior block.

For the programmers: This is a bit like a one way linked list.

Longest branch (longest chain)

The longest chain of blocks represents the current state. If we display the chain as a tree,
then that is the longest branch. The root of that tree is called the Genesis Block.

/ OOCC00,
OO0

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain ;
L Concept 2: Blocks ‘ Psl
LLongest branch (longest chain) d@gﬁ%g_—g@ g0,

If suddenly, another branch were to become longer, then that branch would
then be the state of the system.

Block height and depth

Height identifier
Depth expression of security

Genesis Block /@

o reign o s]

@ Depth

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain
LConcept 2: Blocks ‘ o
L Block height and depth T

Rataty

Even though we don’t use numbers of blocks anymore to determine their
dependencies, numbering them can still be useful. It allows for easy
referencing of specific blocks. There are two important ways of doing this:

Height The block height expresses the block’s distance from the Genesis Block. The height
of a block is always the same and does not change when new blocks are added to
the system. Every block in the system has a height.

Depth The depth of a block expresses the block’s distance from the end of the branch.
When a new block is appended to the branch, the depth of every block in the branch
is increased by one. The depth is usually only expressed for blocks of the longest
branch.

Later on when we introduce POW, the depth will become an important
expression of security.

Solving double spend

Following these rules might fix double spend...

...............

—

|00 —3.0| ..
4__[:]. D—>[:] [:]_._’
0

O

=

:..,,32

Current state

W

g

-
—ko‘

“@

0o 0°C

........

CEPPPrPTS

—

—

OgU

Remember: Transactions within the block have to be compatible with transactions in

earlier blocks.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain

LConcept 2: Blocks G
LSolving double spend

Having introduced the second concept, blocks, we would hope that this were
to solve the double spend problem. Here is how:

| make the transaction to 2_B

Eventually that transaction will be included in a block, it is now part of the state, 2_B has
received the money and he hands me over the bicycle

(further blocks might be added to the system, represented by the dotted block)
| make a transaction to draemmli
However, it is in conflict with the transaction to 2_B | made earlier

Because this new transaction is in conflict with a transaction already on the chain, it will not be
included in the chain. A block containing it could be created, but it would be an invalid block and
thus not become part of the state.

Since the transaction never becomes part of the state, draemmli never receives the money and
thus never gives me the computer

Unfortunately, this is not the end of the story. Double spend is still possible...

Subsection 3

Double spend on Blockchains

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain
L Double spend on Blockchains

The double spend attacks covered in this chapter are the same ones
potentially used against real Blockchains. In the next chapter we will discuss
how actual Blockchains protect against those.

Classic double spend

—

Transaction
ja

From: vimja
Balance: 663

To: cardealer
Amount: 1337.0
Owner: cardealer

Balance: x+1337

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain
L Double spend on Blockchains

-
L Classic double spend ;
o

Since these attacks are a little bit more difficult, I'll be stealing something
bigger this time. How about a Tesla (car).

| go to the car dealer. Then create a new transaction, transfering the money
to the car dealer. A short time later, someone will create a block containing
this transaction. So the transaction becomes part of the state, the car dealer
has received the money and | get the car. | then drive away with the car.
Potentially, further blocks are created.

Classic double spend

State
—) —) C—
Transaction Transaction

From: vimja From: vimja
To: vimja2

Amount: 1337.0

To: cardealer
Amount: 1337.0

Niklaus Hofer | Introduction to Blockcl

| April 27, 2016

2016-04-27

LConcepts of a Blockchain
L Double spend on Blockchains :

Eali=a “
L Classic double spend ; / . —
0

Now | create another transaction, also transfering the same money, but not to
the car dealer. Instead, this transaction transfers the money onto a second
account that also belongs to me. Then | create a block containing this
transaction and quickly add a couple more blocks, until my branch is longer
than every other branch in the system.

Finally, | publish that branch. In this new branch, the transaction transfering
the money to my second account is part of the state, but the transaction
transfering money to the car dealer is not. Since this new branch is the
longest chain it is the new state of the system. In this state, the car dealer
has never received the money. | have successfully stolen the car!

Explanation

—> State » New blocks containing the old
Transaction — transaction would conflict
Balance: 2000 > They would be invalid

» And they could not become
Balance: x

part of the state

Transaction

From: vimja
To: cardealer
Amount: 1337.0

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain IV
L Double spend on Blockchains B B \‘
L Explanation E P

O

By creating a new transaction (the one transfering the money onto the vimja2
account) that is conflicting with the earlier transaction (the one transfering the
money to the car dealer) and putting the new one into my chain/branch, |
prevent the first transaction from ever becoming part of the same branch
again. A block containing one of them will be in conflict with block containing
the other, thus they can’t become part of the same branch.

p2p networking attack setup

Most Blockchain currencies use a
p2p network

» to distribute the transactions
» to distribute the blocks

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain
L Double spend on Blockchains
Lp2p networking attack setup

An attacker that controls our connection to the p2p network used to distribute
transactions (either by controlling our network connection or by controlling the
peers we connect to) has a lot of power. Such an attacker can:

e Control our view of the network
e Present to us blocks and transactions he does not present to the rest of the network
e Hide from us blocks and transactions the rest of the network sees

This can be used to perform a slightly more complicated and sophisticated
form of double spend attack.

Double spend network attack

Public network view: Car dealer’s view:
State > State

Transaction
Owner: vimja
Balance: 663
Owner: cardealer
Balance: x+1337

Transaction
From: vimja

To: cardealer
Amount: 1337.0

» Wait for yet another block to appear » In the view of the car dealer, the
transaction is now part of the longest
chain

» The car dealer (thinks he) has received
the money

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain

L Double spend on Blockchains
L Double spend network attack

e

l, the attacker, sit between the network and the car dealer and control which
messages go where. Here are the steps | take on each side of the barrier:

Create a transaction transfering
the money to my second account

Hide this transaction from the car
dealer

Wait for this transaction to be
included in a block

Wait for yet another block to be
formed

Hide both those blocks from the
car dealer

Create a transaction transfering
the money to the car dealer

Present this transaction to the car
dealer, but not to the network

Create a block containing this
transaction

Present this block to the car
dealer, but not to the network

Double spend network attack N

State

» The transaction to car dealer is not part T~ I
of the state vimj vimj [- vimj l
. 'T';?r?ardltg:ér g:;;:ce\:/ (I)ma
» The car dealer does not have his money Amount: 1337.0
» The two transactions conflict

» They can not be part of the same chain
» Any block containing the other one
would be invalid

Owner: cardealer

Balan

Owner: vimja2
Balance: 2000

“Confiict

\

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain e
L Double spend on Blockchains R B /C]
L Double spend network attack D@X)@

Eventually, | stop the attack. Now the car dealer becomes a part of the
network again. The car dealer and the rest of the network synchronize their
blocks and transactions.

The car dealer’s branch is the shorter one. But in the other branch, which is
the state of the system, he has never received the money.

Again, | have created a conflicting transaction to prevent the one to the car
dealer from ever becoming part of the state again.

Remaining problems

» The attacks just described
» It is easy and cheap to create blocks
» Anyone can create any number of blocks at no cost

» Coinbase

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

LConcepts of a Blockchain
L Double spend on Blockchains
LRemaining problems

With the last two attacks, which were both successful, | have demonstrated
that our current system is not good enough. Clearly just the two concepts
introduced so far are not enough to form a strong system. So we have to
introduce yet another concept.

By doing so, we complete the Blockchain. This is why there is a new section
at this point.

Section 3

Blockchain

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Subsection 1

POW and mining

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Concept 3: POW |

» Problem: Creating blocks is easy
» Solution: Make creating blocks hard
» To create a new block, one has to solve a problem

» The solution gets included in the block
» It's called a Proof of Work (POW)

» We call this: Mining
We need to slightly adjust the rules for valid blocks:
» They need to contain a valid solution to a problem

And redefine the state:
» The branch with the highest accumulated difficulty

» Must not necessarily be the longest branch
This prevents someone from creating a new long chain of blocks quickly.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Blockchain
LpOW and mining

LConcept 3: POW

The problem needs to depend on the input. The input, of course, are the
transactions that are part of the block. For a different set of transactions, the
solution will need to be different as well.

This is to prevent someone from pre computing a large set of solutions and
then using it to suddenly create a long branch. If the problem depends on the
input, work on solving the problem can only start once the exact transactions
making it into the block are known.

The process of finding the solution is called mining.

The solution to the problem is attached to the block and published. Everyone
receiving the block can easily check if the solution is a correct one.

Concept 3: POW Il

The problem has to meet certain criteria. It needs to:
» be Hard! Solvable only by brute force
» be adaptable in difficulty (to the amount of power available to the network)

» depend on the input (the block in question)
» prevent pre compute attacks

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Reward

» There needs to be an incentive for creating new blocks
» We have no way of creating new money yet
» Where does it come from (we start with an empty state)

We solve both problems at once:
» The miner of a block gets brand new money

» Done via a coinbase transaction
» Transfers money from nowhere to the miner’'s account

Thus the term mining
Often called a reward
Additional idea: Transaction fees

v

v

v

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Mining |

» Which branch should a miner work on?
» For the reward to be spendable, it needs to be part of the state
» The state is the "longest" branch
» So it only makes sense to work on the "longest" branch
» Works without any coordination!
Randomization:
» Not all miners will be working on the exactly same problem
» Different order of transactions in block, different selection of transactions, ...
» This is desirable
» It equally distributes the success rate according to actual computing power

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Blockchain
LpOW and mining

LMining

Randomization: If all miners were to work on the exact same problem, that
would be a problem: They would all be brute forcing the problem. So the one
with the fastest computer would always find the solution first. In practice this
is not a problem, because they will not all be working on the same problem:
The coinbase transaction, for one, will be different for each miner. And also
the order of transactions might be different. So since the inputs are different
and the problem depends on the input, they are working on different
problems. This works very well. In reality, a miner that has 10% of the
network’s computational power, will be the first to finish work on a block in
about 10% of the cases.

Mining Il

This is where the 50% attack comes from:
» All miners work with their combined power on the longest branch

» An attacker attempting to create a longer branch needs to produce blocks faster than
all the other miners combined

» For that he needs more power than all the other miners combined
» He needs more than 50% of the network’s power
Block creation:

» Whilst a block is created, new transactions pile up
» As soon as a block is done, all miners start working on the next block
» It will contain all the transaction that showed up whilst the last one was created

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Network difficulty

In practice, we want to add yet another rule:
Blocks should appear at regular intervals
This makes the network reliable
Difficulty needs to adapt to the available power
If blocks have a timestamp, the average network power can be calculated
» Constraints for timestamps are needed
From this a target difficulty can be calculated
New rule for valid blocks:
» Their difficulty needs to be equal to or greater than the network target difficulty!

vV Yy Vv oy

v

v

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Blockchain
LpOW and mining

L Network difficulty

We want blocks to appear at regular intervals (how long these intervals are, is
of lesser importance). That way, when we create a new transaction, we can
estimate how long it will take for the transaction to be included in a new block
and thus become part of the state.

So we define a difficulty target. When the network’s computational power
changes, we adapt the difficulty accordingly. That way, the time between
blocks stays the same.

Blocks that include a solution to a problem which is not hard enough are
invalid.

This makes the distinction between the longest branch and the branch with
the highest accumulated difficulty almost completely obsolete. In almost
every case, the longest branch and the one with the highest accumulated
difficulty will be the same.

Subsection 2

Solving double spend

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Blockchain
LSolving double spend

Let’s revisit the double spend attacks from earlier. The two attacks will be the
same as in the chapter before, but now we have POW to protect from the
attacks. Let’s see how this goes...

50% attack

) State

Transaction Transaction

From: vimja From: vimja
To: cardealer To: vimja2 Balance: 663
Amount: 1337.0 Amount: 1337.0

Owner: cardealer

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

» vimja creates two transactions
» Only the legit one gets

published

The network has more power
than the attacker

Thus they create new blocks
faster

The attacker’s chain never
becomes the longest

Unless he had >50% of the
total power

That’s called a 50% attack

2016-04-27

LBlockchain

LSolving double spend == ‘[\‘

L—-50% attack ; /7
£ DU/

Now the miners are constantly working on new blocks. This is represented by
the dotted blocks.

The situation is largely the same as it was for the same attack in the last
chapter. However, this time, the attacker can’t easily create a longer branch.
He needs to mine each block. This is a lot of work.

Since the attacker’s mining power is less than the combined power of all the
other miners in the network, the attacker creates new blocks at a slower rate.
Thus, the attacker’s branch never becomes the longest one and never
becomes the state of the system.

The attack has successfully been prevented!

The only way the attack could succeed is if the attacker had more mining
power than all the other miners combined. That is to say, the attacker would
need more than 50% of the network’s mining power. Thus the term 50%
attack.

Network attack

Public network view:

State
Transaction
From: vimja
To: vimja2

Amount: 2000.0

Balance 2000

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Car dealer’s view:
—» State

Transaction

From: vimja
To: cardealer

Owner: vimja
Balance: 663
Amount 1337.0

Owner: cardealer
Balance: x+1337

» The car dealer can’t see the other,
longer branch

» Thus in his view, the transaction
becomes part of the state

» He has the money, hands over the car

2016-04-27

L Blockchain
Solving double spend B g‘

‘ [:I
L Network attack D@-B}D{F c»c%

This attack too, is largely the same as in the previous chapter.

The attacker now has to put in effort to create the block he presents to the car
dealer. Since the rest of the miners are faster at creating new blocks than the
attacker is, the branch on the public network is the longer one.

However, since the car dealer can’t see the network’s branch, he accepts the
attacker’s block as the longest chain. So the car dealer thinks he has the
money and hands over the car.

Network attack

» The transaction to car dealer is not part
of the state

» The car dealer does not have his money

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Em— State

Transaction

Transaction

From: vimja From: vimja
To: vimja2 To: cardealer
Amount: 1337.0

Owner: vimja
Balance

Owner: cardealer
Balance: x

Owner: vimja2
Balance: 2000

Amount: 2000.0

2016-04-27

LBlockchain

L—Solving double spend Ki—— /E
L Network attack m&w

Again, when the attack stops and the car dealer synchronizes with the rest of
the network, it becomes clear that the car dealer’s branch is the shorter one.
So this kind of attack still works despite POW.

However, on the following slides, | will explain why such an attack is not worth
the effort.

2016-04-27

LBlockchain T
Solving double spend R /@
L Network attack od

Short discussion: 10 minutes, the block time used by Bitcoin, is a long time. If
you buy, say, an ice cream, you don’t want to wait 10 minutes for your
transaction to be processed. Because of this, some people will accept
transactions as soon as they appear on the network - given of course, that
the transaction is valid and not in conflict with any other transaction that is
already part of the chain.

This will work fine in most cases, and if the ice cream seller gets tricked once
or twice a week, he can probably still run his business. However, this practice
is NOT SECURE AT ALL. Transactions should only be accepted as valid
once they are included in a block.

This very network attack demonstrates why. If the car dealer were to accept
transactions that are not yet in any block, all the attacker would have to do
was to send a transaction to the car dealer. He would not have to put in the
time to mine an extra block and thus the mechanisms described on the
following slides would not work.

What happened

» The attack still worked
But:

v

It now costs the attacker effort and time
The attacker needs resources

He can use these resources to

» Mine on the network
» Execute the attack

But only ever one at a time

So while he is doing the attack, the attacker can’t be mining
» And this is expensive

Just how expensive exactly?

v

v

v

v

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

The costs of the attack

> Attacker power: 20% = { of the network
» Network avg. block time: 10min
» Block reward: 25 Btc

The attacker needs to create one block:

Time the attacker needs to to create one block
10min 50min

100% Power = — 20%Power =

Block Block

So the attacker spent 50min on the attack. In 50min, 5 Blocks get created. What if he had
instead spent the 50 minutes mining:

Reward in 50min mining

25Btc 1
5Blocks - Block 5~ 25Btc

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Blockehain
I—Solving double spend

I—The costs of the attack

The attacker can either use the power to perform the attack, or to do
legitimate mining in the main network. The attack, in this example, would take
50 minutes. Spending 50 minutes performing the attack, means that, for 50
minutes, the attacker can’t be mining.

But in that time, if the attacker were mining instead of attacking, he would
mine (on average) one block and earn 25 Btc.

So the attacker has to decide: Should he perform the attack, or should he
earn 25 Btc. Obviously, he will go for the more profitable choice. Performing
the attack then, is only worth it, if the attacker can steal more than 25 Bic in
these 50 minutes.

Protecting from the attack /\

» Instead of doing the attack, the attacker could have made 25 Btc mining
» The attack was only profitable, if the gain was >25 Btc
» In every other case, spending the time mining would have been more profitable

Attacker’s power

The power of the attacker does not matter. An attacker with more power needs less time,
but he looses more money per time.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Waiting @

Waiting for 3 Blocks, 20% attacker power

50min 150min

20%Power —

Block 3Block
Within 150min, 15 Blocks get created!

25Btc 1 _ 75Bic

15Blocks - Block 5

y

So the larger a transaction we protect, the longer we have to wait. You can easily calculate
for how long you have to wait to be secure.

How long to wait?

[amount < Blockreward] + 1

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Blockchain
LSolving double spend
LWaiting

How long 1o wait?

To protect ourselves from an attacker, we don’t hand out the goods
immediately. Instead, once the transaction has been included in a block, and
thus become part of the state, we wait until some more blocks have been
added to the same branch.

If we were under attack, the attacker would have to create those additional
blocks as well. It would cost him even more time to do so. All this time the
attacker spends on creating the additional blocks he can’t spend mining.
Thus it costs him money. The longer we wait, the more expensive an attack
becomes.

We can calculate how expensive the attack gets. So we can calculate how
long we have to wait (depending on how large the transaction we receive is)
for an attack to not be profitable.

If we do this, then an attack is never ever worth it. It is then more profitable for
the attacker to NOT perform the attack! So even though the attacker could
attack us, he doesn’t want to!

The car dealer’s protection

Public network view: Car dealer’s view:
State > State
Transaction Transaction
The transaction becomes
part of the state here

From: vimja
To: vimja2
Amount: 2000.0

From: vimja
To: cardealer
Amount: 1337.0

The car dealer hands
over the car here

2016-04-27

L Blockchain
LSolving double spend

The car dealer’s i =
protection \[[

i

If the car dealer, after the transaction has been included in a block (and thus
has become part of the state), waits for another few blocks to be added on
top of that, then the attacker has to create all these additional blocks. This will
take the attacker a long time. During this time, the attacker can’t use the
computational power to mine on the main network. So he has to do without
the block rewards he could get during that time.

If the car dealer waits for enough blocks, the attack will become so expensive
that using the power to mine instead is more profitable.

Obviously, three (as shown above) is not the correct number of blocks to wait.
The correct number of blocks to wait depends on the price of the car and the

block reward.

Subsection 3

Implementing POW

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

A word on Hahes f\
-

We care only for cryptographic hashes. They have three formal properties (preimage
resistance, second preimage resistance, collision resistance).
We will look at less formal properties:
» One way function
» Turns an arbitrarily long input into a fixed length output
» One way property

» Given an output, it is hard to find the matching input
» Hard means brute force

» Even distribution
» hash(fool) and hash(foo2) have completely different results

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Blockchain
leplementing POW

LA word on Hahes

| will be talking a lot about hashes in the coming slides. In Blockchains, they
are often used to solve a variety of problems. This slide is for those who do
not yet know what a hash is.

Block Header

At the minimum, a block contains:
» Transactions
» Reference to the previous block
» Solution for the challenge

The latter two need to be stored somewhere. We call that the block header.

(Reference to

1 [prev. Block

Solution to)

the problem

|

05
0

DID

\

Transactions

O
O

[31[31[31

People rarely talk about block bodies though.

Block Header

Block Body

How it works with hashes |

Easy for the reference to the previous block:
» The previous block’s hash
» If the block changed (even just 1 Bit) the hash would change
» Virtually impossible to fake (see slide on hashes)
» Called the previous-block-hash or prev_blk_hash

We can also use hashes for the problem that needs solving:
Problem/Challenge Create a block which’s hash starts with n Bits of value 0
Solution A nonce, stored in the solution field of the block header
mining lterate (brute force) through the nonce, until the block’s hash starts with n 0s
Difficulty n represents the difficulty. The more leading Os are required, the harder it is
Difficulty manipulation Changing n changes the difficulty. The difficulty is non-linear

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Blockchain
leplementing POW

LHow it works with hashes

A block references the previous Block via the previous block’s hash. This is
called the previous block hash, or prev_blk_hash for short.

Modern Blockchain designs use POW algorithms that are more complicated
than hashing. The algorithms used today are all memory-hard, that is to say,
to solve them, one needs a lot of memory (RAM). This makes building
dedicated mining hardware (so called ASICs) expensive.

ASICs can be bad for the security of a Blockchain/POW based system. | will
not discuss the reasons for this here though.

How it works with hashes I

[hash(previblk) |<nonce>]

Transactions

hash @ @ ;] % = ooo:ooomu...
050 6

A few notes:
» This was often done in older Blockchains

» Newer Blockchains use other things

» bcrypt, scrypt, ...
» Usually things that are memory hard
» However, on a high level view, it works similar to hashes

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Decoupling the header from the content | (\

It can make sense to decouple the block header from the body. We do it like this:
» Create a hash of all the transactions
» Add this to the block header

Reference to| Hash of the | Solution to
[prev. Block | transactions | the problem]} Block Header

Transactions

—= U
QD C] D Block Body

DC]D 0

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Decoupling the header from the content |l

This does a number of things:
» The prev_blk_hash is now actually the hash of the previous block’s header
» So each header references the previous header
» Each header also references its block body, that is the transactions

Header)4—(Header)4—(Header]
¥ * -

¥

¥

Body Body Body

[Header)<—(Header]4—(Header)<—(Header)4—(Header)4—(Header)<—[Header]
) ¥ + N ¥) ¥
¥

¥

Body Body Body Body Body Body Body

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Decoupling the header from the content lll

What does this mean for security?
» The transactions are all still just as secure
» Changing a single transaction would change the body’s hash
» It's now possible to store the bodies and headers separately
» The chain can be built from the headers only

» Creating a new header is as hard as creating a new block
» Creating a fake header is as hard as creating a fake block (it's impossible)

» The bodies can be pulled from anywhere and then checked against the headers
We will see how this can be used to create amazing functionality later on.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

0~

Section 4

The Bitcoin Blockchain

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L The Bitcoin Blockchain

The Bitcoin Blockchain

| talked a lot about generic Blockchain designs and concepts. To get a better
idea of how these concepts are implemented, we will now take a look at the
Bitcoin Blockchain.

Subsection 1

The structure of a block

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

-

(version prev_blk _hash

mrkl_root

timestamp

difficulty

nonce)

| S | SE——] U | W—" | S— —_—

32 Bit 256 Bit

256 Bit

version Block version. Currently at 3
prev_blk_hash Hash of the previous Block. Reference to the previous block
mrkl_root Reference to the transactions. Root node of the Merkle tree
timestamp Standard UNIX timestamp in seconds. Complicated rules here
difficulty Difficulty of the block. Network difficulty is recalculated every 2016 blocks
nonce Nonce used to manipulate the block hash. Note: too short

32 Bit

32 Bit

32 Bit

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L The Bitcoin Blockchain

The structure of a block
Header

The image above shows the header of a Bitcoin Block.

Note that the nonce is only 32 bit long. By now, this is too short for the POW.
So additionally, the coinbase transaction gets modified, to modify the
mrkl_root. More details on that will follow on a later slide.

Rules for block Timestamp:

"A timestamp is accepted as valid if it is greater than the median timestamp
of previous 11 blocks, and less than the network-adjusted time + 2 hours.
‘Network-adjusted time’ is the median of the timestamps returned by all
nodes connected to you." - The Bitcoin Wiki: https:
//en.bitcoin.it/w/index.php?title=Block_timestamp&oldid=51392
2016 Blocks equals 14 days.

https://en.bitcoin.it/w/index.php?title=Block_timestamp&oldid=51392
https://en.bitcoin.it/w/index.php?title=Block_timestamp&oldid=51392

Hashes and POW

Hashes:
» Bitcoin uses Sha256

» Bitcoin uses dhash, that is to say doublehash sha256(sha256(...))
POW:

» Bitcoin uses the Block Hash for POW

» POW: First n Bits need to be 0

» Difficulty is adjusted every 2016 Blocks (14 days)
» Network speed target: one Block ever 10 minutes

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

The Bitcoin Blockchain
The structure of a block
L Hashes and POW

Every Bitcoin client compares the actual time it took to generate these blocks
with the two week goal and modifies the target by the percentage difference.
Each node calculates the network difficulty independently from all other
nodes. It is then, important that they all get the same result and thus that they
all use the same algorithm.

Merkle tree

:..Mm

Bitcoin uses a Merkle tree to secure the transactions. Root of the Merkel tree is part of the
Block Header.

» Binary tree
» A node is the hash of the two child nodes
» In Bitcoin, sha256 double hashes are used here too

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

The Bitcoin Blockchain
The structure of a block
Merkle tree

We have already seen the term mrkl_root in the image of the Bitcoin Block
Header. It stands for Merkle root and means the root node of a Merkle tree.
The Merkle tree is used to secure the transactions and to finally form one
hash that represents all transactions and can be put into the block header.
The Merkle tree, as used by Bitcoin, is a binary tree. Every node, except the
leave nodes, is formed by creating the doublehash of the concatenation of
the two child nodes.

Merkle tree visualization

Merkle Root

dhash(h12 || h13)

h1 h1
dhash(h8 || h9) dhash(h10 || h11)

\ \

he= ho= h10= h11=
dhash(ho || h1) dhash(h2 || h3) dhash(h4 || h5) dhash(h6 || h7)

[\]

hé=
dhash(t6,
1,

\

Merkle tree visualization

(versionlprev_blk_hashl Merkle Root | timestamp | difficulty | nonce)

dhash(h12 || h13)

\

\
\ SN
o..o.q

{Bmck Bod | {

—

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

The Bitcoin Blockchain
The structure of a block
Merkle tree visualization

The Merkle Root is put into the Block Header. The collection of transactions
become the block body. The rest of the Merkle tree is then no longer needed.
If someone validates the block, they retrieve both the header and the body,
then create the Merkle tree from the body they retrieved and compare the
Merkle root to the value from the block header. If the two values match,
everything is in order

It's important that the order of blocks in the body is preserved, otherwise the
result of forming the Merkle tree would be a different one.

All transactions are secure. If one would be changed or replaced, the hash of
that transaction would change, which would be reflected in the node above,
which in turn would change that node’s parent and so on until finally, the
Merkle root would be a different one.

Merkle branch

» We have the Merkle root

» We can get it securely from the Block Header
» We do not have the elements it consists of
» We are interested in a single element

» A single transaction

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

The Bitcoin Blockchain
The structure of a block
Merkle branch

The Merkle tree allows us to secure all the transactions. Even more
interesting though is another feature - the Merkle branch. The Merkle tree
allows for a single branch to be extracted and then stored in a space efficient
yet safe way.

Merkle branch visualization

Merkle Root

dhash(h12 || h13)

\ hi3=
hi2 dhash(h10 || h11)

h10=
dhash(h4 || h5) hi1

/\
o

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

The Bitcoin Blockchain
The structure of a block =
Merkle branch visualization

C:'>/ \:ﬁ
A

(1]
To form the Merkle branch, only the values in rectangular shapes are
required, the values in the ellipses can then be calculated.
In this example, where we want to check Transaction t5, we need to
download only t5 and the hashes h4, h11 and h12.
From these four values, we can form the Merkle branch and get the Merkle
root.

Merkle branch advantages

: X

Instead of retrieving all elements (transaction), we can just pull one Merkle branch. This is
much faster:

» We need to retrieve less elements

» We can retrieve hashes instead of transactions

» The advantages get larger the bigger the tree

Take a 1600 transaction Block. Instead of retrieving 1600 transactions, we can retrieve 1

transaction and 11 hashes!
This can be used to create very efficient light clients. More about this later.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

The Bitcoin Blockchain
The structure of a block
Merkle branch advantages

So to prove that a specific transaction is actually part of a block, the Merkle
branch for this specific transaction can be retrieved. The Merkle branch will,
especially for very large blocks, be smaller than the entire body.

Only the specific transaction plus log>(number of transactions in the block)
hashes need to be downloaded to form and verify the Merkle branch for a
transaction.

Downloading and verifying the Merkle branch is just as secure as
downloading the entire Block bodly.

Subsection 2

The structure of transactions

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Transaction (Outputs)

Bitcoin uses an Unspent Transaction Output design:
» A transaction has outputs
» An output has an associated address and value
» The address represents the recipient. Think of it as an account number
» The value gets transfered to that address
» There can be one to many outputs

Address: 1a45b...

value: 23.0

Address: 138ac...
© value: 42.0

transaction
(tx)

Address: 17c88...
value: 5.0

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Transaction (Inputs)

» A transaction has inputs

This is where the money comes into the transaction

Each input refers an output of a previous transaction, it spends that output
An output can only be spent once and only by exactly one input

The input spends the entire amount of the referenced output

There are one to many inputs

Address: 194ab...
value: 32.0
‘Address: 1a45b...
value: 23.0
Address: 138ac...
value: 42.0

v

>
>
>
>

transaction
(tx)

transaction
(tx)

transaction Address: 1238...
(tx) value: 39.0 Address: 17¢8!
value: 5.0
o

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Transaction (...)

» An output can only be spent by the owner of the address
» (the holder of the account)
» The total value of all inputs needs to be > than the value of all outputs
» The difference between input amount and output amount is the transaction fee

Address: 194ab...
value: 32.0
0 -
Address: 1a45b...
value: 23.0
i (Address: 138ac...
value: 42.0
transaction
(tx)
0

Address: 1f238... H
value: 39.0 Address: 17c88...
value: 5.0

transaction
(tx)

transaction
(tx)

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

-

» An output that is yet to be spent is called an unspent transaction output, utxo
» The balance of an address (think account) is determined by the utxos for that account
» The balance equals the total value of all utxo for that address

Remember our definition of the state of the system from earlier:
» Collection of all accounts, which in turn have a balance

Definition
The state of the Bitcoin system is the collection of all utxo

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Address

Bitcoin uses digital signatures to secure accounts:
» Bitcoin uses 256 bit ECDSA key pairs (512 bit public key)

» An address is the ripmed160 hash of the sha256 hash of the public key

» Both shorter and more secure than using the public key directly
» Each address should only be used once

» Plus an identifier (on mainnet that’s "1")
» An output contains the address the money goes to
So in order to spend an output, the spending input contains:
» The public key
» Using the address, it's possible to verify the public key
» A signature for the transaction

» Created using the secret key
» Can be verified using the public key contained in the input

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

The Bitcoin Blockchain
The structure of transactions
L Address

It's called a crypto currency, but so far we haven’t used a whole lot of
cryptography (other than the cryptographic secure hashes).

Bitcoin (as do other crypto currencies) uses public-key cryptography to
secure transactions. Transactions get signed with the secret key. The hash of
the public key is used as and address to which money can be transfered.
There are different types of addresses (not discussed here) and there are
several networks. To make it possible to distinguish the different types of
addresses and the different networks they are part of, a set of prefixes is
defined. The "normal" Bitcoin addresses (Pay 2 pubkey addresses) have the
Prefix "1".

2016-04-27

The Bitcoin Blockchain
The structure of transactions
L Address

Publishing the hash of the public key rather than the public key itself is a
question of security: As soon as the public key is actually public, someone
can start attacking it (trying to find the matching secret key). If only the hash
of the public key is published, such an attack is not feasible.

However, in order to spend an output, one needs to publish the matching
public key, so that other people can verify the signature. From that moment
on, the key pair can potentially be attacked. This is no danger for the output
we just spent, but it is a potential danger for other outputs that point to the
same address.

Because of this, a Bitcoin address should only ever be used once.

So for each transaction you receive, a new key pair has to be created. But
managing (potentially) hundreds of key pairs could become very tedious. To
circumvent this problem, Bitcoin clients/wallets can use key derivation to
securely derive a (virtually) infinite number of new key pairs from a single
secret.

What an input looks like

An input contains a number of things:
» Reference to the previous output

The output this transaction is spending

Called the outpoint

Hash of the previous transaction

Index of the output within the previous transaction

» Public key for the address the previous output went to
» Signature for the transaction

v

vvyyvy

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

The Bitcoin Blockchain
The structure of transactions
L What an input looks like

Inputs must be valid. That is to say, they need to correctly reference an utxo
(previously unspent transaction output) and they need to contain proof that
they have been created by the holder of the keys for that previous output.
Outputs on the other hand can contain pretty much just anything. Because of
this they get used for other things, such as storing information in the
Blockchain.

ER diagram

"\ height 3 ¢ tx count

contains

" “block_index Y

Transaction

Outpoint {8:n)
I

references

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Input and output amounts

To create a new transaction, you:
» Figure out how much you want to transfer
» Chose some utxo(s) to use as inputs

However, the value of the utxo(s) will rarely exactly match the sum you want to spend:
» So some of the money needs to return to you

» Easy: Just add another output that sends some of the money to one of your
addresses

» Proper Bitcoin clients will create a new address for that
» This also makes these outputs indistinguishable from other outputs

R

———O Goes to someone else's address

transaction

(tx) ———O0 Goes to someone else's address
X

0O Goes to one of my addresses

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Well actually...

Just so no one can say | didn’t tell you...
Transactions use a non-Turing-complete stack based language.
» This allows for more complicated transactions

» multisig
» Pay to script hash
» OP_RETURN

> e
» The output poses a challenge
» The input needs to solve the challenge

But we could sit here talking about details of Bitcoin all day long.
Go read "Bitcoins the hard way: Using the raw Bitcoin protocol” by Ken Shirriff if you want
to learn more.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

The Bitcoin Blockchain
The structure of transactions
L well actually...

Actually, Bitcoin transactions are a lot more complex than that. Each input
and output contain a script which is written in a language developed for this
purpose. The scenarios | described above still hold: They are the most used
sort of transaction in the Bitcoin network. They can be implemented in very
few commands of the scripting language.

However, the scripting language also allows for much more complicated
scripts (though not arbitrarily complicated ones since the language is not
Turing complete).

This however, is outside the scope of this talk.

"Bitcoins the hard way: Using the raw Bitcoin protocol" by Ken Shirriff -
http://www.righto.com/2014/02/
bitcoins-hard-way-using-raw-bitcoin.html

http://www.righto.com/2014/02/bitcoins-hard-way-using-raw-bitcoin.html
http://www.righto.com/2014/02/bitcoins-hard-way-using-raw-bitcoin.html

Coinbase: Creating money

The miner of a new block gets a reward. The reward is the sum of:
» Fixed reward/ newly generated money

» Started at 50 Btc per Block
» Halves every 210000 Blocks (ca. 4 years)

» The transaction fees of all transactions in the block
To do this, the miner creates an additional transaction:

» So called coinbase-transaction

» First (left most) transaction in the Block

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Coinbase transaction

The coinbase transaction has one input:
» Called the coinbase
» |t does NOT refer a previous output
» Instead it contains arbitrary data
A number of things are to be found in most coinbases:
» BIP34 Block Height
» ExtraNonce for mining
» Other data

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

The Bitcoin Blockchain
The structure of transactions
Coinbase transaction

The output of a coinbase transaction is like all the other outputs in Bitcoin.
The input however, is different. A coinbase transaction always has exactly
one input. This input, unlike every other input in the Blockchain, does not
reference a previous output. Instead, it contains arbitrary data.

The input of a coinbase transaction is called a coinbase.

| have already mentioned that the nonce in the block header is not large
enough for mining. So miners change the data in the coinbase. This changes
the Merkle root and thus the block header. That way, the 32Bit size limit of the
Block header’s nonce can be circumvented. Because of this, the random
value added to the coinbase for this purpose is often called the ExtraNonce.
Miners also often put their name into the coinbase.

Section 5

Light clients

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Bitcoin wallets

A wallet should:
» Let you make payments
» Verify paymets you receive
A full client does that. But it does a lot more still:
» |t stores the entire Blockchain
» It validates every single transaction
» It validates every block
» As a node in the p2p network, it helps distribute transactions and blocks
Often times, people use full clients as wallets. But that’s not always desirable:
» Needs a lot of storage (70GiB)
» Uses a considerable amount of bandwidth (for a mobile device)
» Needs power to validate everything (especially at first sync)
» Can take long to sync after periods of being off-line

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Light clients

L Bitcoin wallets

Wallet applications are used to make and receive payments in Bitcoin.

Full nodes are the nodes powering the p2p network. They have a lot of
features and most of them can be used as a wallet application. But that’s not
always desirable. Especially on mobile devices where bandwidth and battery
runtime are concerns, the high resource usage of a full node is a no go.

So people need wallet software that’s less demanding.

Light clients

One possibility are online wallets:
» Wallet is hosted and run by someone else
» The user only has an app/ interface to talk to that service
» All validation done by the service
» Obvious security risks
» That is really not the idea of a distributed currency
So the solution are light clients:
» Clients that are not fullnodes
» But still allow for secure transactions

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Light clients

L Light clients

There are cloud/online wallet services that can be used. They come with a
web fronted or even dedicated wallet apps. However, the keys used to
manage the wallet are stored online on the servers of the service provider.
This is an anti-feature of crypto wallets, where the user is supposed to be in
control of their money. So this is not the solution we’re looking for.

The better solution to the problem are light clients. These are Bitcoin clients
that don’t need to download, stored and/or validate the entire Blockchain but
still provide wallet functionality.

Subsection 1

Simplified Payment Verification

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Intro to SPV

SPV stands for Simplified Payment Verification
These clients do NOT validate the entire Blockchain
They rely solely on the difficulty of creating blocks

They are still almost equally secure

» We have shown in the network attack scenario, that faking blocks is not worth it
» Even if, the same attack could also work against a full node!

vV Yy Vv Yy

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Working of an SPV client

» Connect to the network
» Download all block headers
» 88Byte - 410000blocks ~+ 22° ~ 32MB
» Form the chain
» This is just as secure as forming the chain from entire blocks

To create new transactions, we have to know our utxos:
» Request utxo for all our keys together with the matching Merkle trees
» This is just as secure as downloading each entire transaction
When we retrieve money:
Wait until the transaction has been put into a block
Download the block header
Request a Merkle-Branch proving the transaction is part of that block
Wait for more blocks to be formed to confirm the security

v

vV v v

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Dangers of using SPV Clients

Admittedly, there are a number of dangers:
» When we request a set of our utxo, we reveal which addresses we own
» Potential loss of privacy
» An attacker could serve us utxos that we have already spent
» Extremely limited attack vector
» We can not verify loose transactions
» You should NEVER do this anyway

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Light clients
LSimplified Payment Verification
LDangers of using SPV Clients

A SPV client can’t validate loose transactions. However, loose transactions
should never be trusted anyway. In the network attack scenario | showed
earlier, trusting loose transactions would be wrong, even if a full client is used.

Subsection 2

Pruning client

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

On the size of the Blockchain

» The chain, as of now, is approx 70 GiB in size
» It grows at max 1MiB/10 min

But let’s say it grew for 8MiB/ 10 min:
365-24 -6+ 2'° = 411GiB/year

You can get 4TB disks for less than CHF 130.-. It will last you 9 years (even at this insane
growth rate). That’s less than CHF 15 per year.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Light clients
LPruning client
L—0n the size of the Blockchain

You might want a validating light client. SPV clients can’t be used for that.
Before we look at that, | want to say a word on Blockchain size. The Bitcoin
Blockchain is currently 70 GiB in size. This sounds like a lot on first glance,
but | think it’s not a real concern for anyone willing to run a full node.

At the moment, the Blockchain grows by only 1MiB per 10 minutes. But let's
say it were to grow at 8MiB per 10 minutes. Even at that rate, you can get a
hard disk that will serve you for 9 years for under CHF 130.-. That's less than
CHF 15.- per Year, which should be acceptable for most people.

The idea

Say you still want to verify everything. But you don’t want to store the entire chain.
In order to verify new transactions, you don’t need the entire chain. All you need is the
current state! The collection of all utxo.

Fullnodes usually have a set of the state anyway and operate purely on that!

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Light clients
LPruning client
L The idea

Even fullnodes that have a copy of the entire Blockchain rarely even access
that chain. Instead they have a separate copy of the state, a set of all utxo,
they work on. This is sufficient to verify new transactions and blocks.

The full Blockchain is only used on rare occasions, such as when a backtrack
is necessary because of orphan blocks.

How to get there

:..wt

Current (0.12.0) versions of Bitcoin Core and Bitcoin Classic have proper pruning modes.
They work like so:
» For each block:
Check block validity
For each transaction in Block:
Check transaction is valid

Apply the transaction to the state

» Add the new outputs to the list of utxo
» Remove the txos spent by the transaction from the set of utxo

» Throw the block out

vV Yy Vv Yy

So each block and each transaction gets verified. But only the set of utxos gets saved.
The set of utxos is enough to validate new transactions.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Light clients
LPruning client
L How to get there

It's advisable to still keep the last few blocks. This is needed when orphan
blocks are detected. In that case, one needs to unapply the transactions from
the orphan blocks from the state. For that, these transactions need to be
known, so the block needs to be available.

Other functions of pruning clients

» They can be used for mining

» Since they can validate every loose transaction, they can create new blocks of valid
transactions

» Help distribute transactions and blocks
» Ability to detect and block invalid ones
But actually, the whole network could be made from pruning nodes:
No one stores the entire chain
» Every node stores a random set of blocks
» That way, all blocks are still in the network
» No one needs the storage to hold the entire chain

v

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Problems of pruning nodes

Pruning nodes do not work on low bandwidth devices:
» They still need to download all data
» For initialisation, they need to download the ENTIRE chain
» They need to validate the entire chain

That is just not feasible for mobile devices!

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Home made fix

Let’s say we have a trusted fullnode (my PC at home).
On that node | do:

» Take a set of the current state

» Create a hash of that set

» Create a new OP_RETURN transaction with that hash
On the pruning node | do:
Download all block headers
» Request the transaction | created on the fullnode with a Merkle tree
» Extract the hash
| 4
>

v

Request a set of all utxos
Verify that set against the hash retrieved above
That way, a pruning node can be initialised without downloading the entire chain.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Problems with that solution

This is a rather ugly solution for a number of reasons:
» | need a fullnode
» | need to make a transaction
» | will be the only one trusting that piece of information
» Custom code and custom clients needed

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

Pruning on steroids

This could be fixed in the protocol:
» Put the hash of the state into the coinbase
» Make this required: Blocks with a wrong hash or without it are invalid
» Now everyone trusts the value
» |t MUST be correct

This would allow a client to sync almost immediately, would be secure and help the
network scaling.

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

2016-04-27

L Light clients
LPruning client
LPruning on steroids

Possibly the best way of building pruning nodes, would be to include the
necessary information in the Blockchain. The hash of the state (set of utxos)
could be put into the coinbase. If you made this a requirement (every valid
block has to contain this hash in the coinbase and the hash needs to be
correct, otherwise the block is not valid), then everyone could trust the value.
It would be easy, save and quick to initialize a new pruning node.

Copyright

» This presentation is licensed under a Creative Commons Attribution 4.0 International
License http://creativecommons.org/licenses/by/4.0/

» In the creation of this presentation, | used the Feather Beamer Theme by "Lilyana
Vankova" which is released under the GPLv3 license.

» As required by the GPLv3, | make the exact sources of the theme, as used by me,
including all modifications | made, available to you. You can download them from
https://gitlab.honet.ch/vimja/beamer_template (commit 1776ad90).

Niklaus Hofer | Introduction to Blockchains | April 27, 2016

http://creativecommons.org/licenses/by/4.0/
https://gitlab.honet.ch/vimja/beamer_template

2

0 6d65 6c70
6170 656

2a20

56d
7b7d
7h65

6564

5 620

	State transition systems
	General concepts
	Double-spend

	Concepts of a Blockchain
	Concept 1: Public ledger
	Concept 2: Blocks
	Double spend on Blockchains

	Blockchain
	POW and mining
	Solving double spend
	Implementing POW

	The Bitcoin Blockchain
	The structure of a block
	The structure of transactions

	Light clients
	Simplified Payment Verification
	Pruning client

