

Ablauf

- Einleitung
- Ungesicherte Verbindungen
- MAC-Adressen Filter
- WEP: Standard, Schwächen, Angriffe
- WEP: Hacking Demo
- Eine sichere Alternative: IPsec

Einleitung

Drahtlose Netzwerke laden zum Mithören ein...

Ungesicherte Verbindungen

- Alle übertragenen Daten können mitgehört werden.
 - -> Demo (Ethereal [1])
- Internet/Netzwerk-Anbindung kann verwendet und missbraucht werden.
- Verwundbare Clients können trotz Firewall/NAT direkt angegriffen werden.

MAC-Adressen Filter

- Viele Access Points bieten die Möglichkeit, nur bestimmte WLAN-Karten zuzulassen (basierend auf ihrer MAC-Adresse).
- Schutz nur genügend, solange kein Client online ist (MAC unbekannt).
- MAC-Adresse kann gesnifft und softwaremässig angepasst werden!
 -> Demo

Wired Equivalent Privacy

- Wired Equivalent Privacy (WEP)
- WEP ist optionaler Teil des 802.11 Standards für drahtlose Netzwerke.
- 3 Hauptziele:
 - Geheimhaltung
 - Zugriffssteuerung
 - Datenintegrität
 - (selbst synchonisierend)
 - (effizient: Hardware- oder Software-Lösung)

WEP - Details

- Link-Layer Daten werden verschlüsselt
- Algorithmen
 - RC4 als Pseudo-Zufallszahlengenerator
 - XOR für die Verschlüsselung (Daten/Zufallszahl)
 - CRC-32 für Integrity Check Value (ICV)
- Schlüssellänge: 64 bit
 - 40 bit effektiv für WEP-Schlüssel
 -> 5 ASCII-Zeichen oder 10 Hex-Zeichen
 - 24 bit Initialisationsvektor (IV)
 - leicht erweiterbar auf 128 bit (104 bit, 24 bit)

WEP - Algorithmus

WEP - Schwächen

- Schlüsselverwaltung
 - im Standard nicht spezifiziert
 - meist 1 lang lebiger Schlüssel, fix codiert in allen Stationen (Access Points und Clients)
- Schlüssellänge
 - Standard definiert nur 40 bit (wegen US-Exportbeschränkungen)

WEP - Schwächen 2

- Authentifizierung
 - "Open System" lässt jeden Client zu, ausser die MAC-Adresse sei gesperrt
 - "Shared Key" setzt Kenntnis des WEP-Keys voraus (Challenge/Response)
 - "Open System" ist sicherer als "Shared Key"
 - -> Attacker kennt Challenge und die verschlüsselte Response!
 - -> Er kann nun jede Challenge beantworten, da er ja denselben IV wählen kann

WEP - Schwächen 3

- IV ist zu klein (24 bit)
 - nur 16'777'216 verschiedene RC4 Streams
 (unabhängig von der Schlüssellänge!)
 - Standard definiert nicht, wie IV gewählt wird (inkrementieren oder zufällig)

IV inkrementieren ist schlecht:
-> 100% Kollisions-Wahrscheinlichkeit, wenn
2 APs senden!

IV zufällig wählen ist ebenso schlecht:

-> 50% Kollisions-Wahrscheinlichkeit, nach 4823 übertragenen Paketen

WEP - Schwächen 4

- Integritätsprüf-Algorithmus unpassend
 - CRC-32 ist gut zur Aufspürung von Übertragungsfehlern, aber schlecht als kryptografische Hash-Funktion
 - CRC-32 (wie auch RC4) ist eine lineare Funktion
 -> CRC32(a) XOR CRC32(b) = CRC32(a XOR b)
 - -> Angreifer kann WEP-Paket manipulieren und relativ problemlos sicherstellen, dass die Checksumme stimmt.

WEP - Schwächen 5

- RC4 hat "schwache" Schlüssel
 - Zusammenhang zwischen Input und Output von RC4 manchmal grösser als erwünscht
 - ca. 9'000 der 16 Mio IV sind interessant
 -> Interessante IV sind von der Form
 (B + 3, 255, X)
 wobei B das zu berechnende Byte des WEP Schlüssel und X zufällig ist
 - 2'000 4'000 interessante Pakete lassen schnell auf WEP-Schlüssel schliessen

WEP - Angriffe

- Known-Plaintext-Attack
 - Angreifer sendet ein Email an Opfer.
 - Für 2 Pakete mit dem selben IV, gilt: XOR(Plaintext-Pakete) = XOR(Ciphertext-Pakete)
 - Der Angreifer kennt (errät) Plaintext-Paket. Wenn er das verschlüsselte Paket sniffen kann, errechnet er den RC4 Stream für diesen IV und kann somit alle mit dem selbem IV verschlüsselten Pakete entschlüsseln!

WEP - Angriffe 2

- Gefälschte Pakete senden
 - Pakete können gefälscht (verändert) und mit richtiger Prüfsumme versehen werden, wenn die Klartext-Differenz bekannt ist.
- Dictionary-Attack
 - WEP-Keys sind häufig schlechte Passwörter
 - -> Ein Angreifer kann gesniffte Pakete "entschlüsseln" und sehr schnell überprüfen, ob der Key korrekt war (der SNAP Header beginnt beispielsweise immer mit OxAA.
 - -> WepAttack [2]

WEP - Angriffe 3

- Interessante Pakete auswerten
 - WLAN-Verkehr sniffen und interessante Pakete (schwache IVs für RC4) ausfiltern und auswerten, um schrittweise auf den WEP-Key schliessen zu können.
 - 40 bit Schlüssel in wenigen Stunden geknackt!
 - 104 bit Schlüssel in wenigen Tagen geknackt!

-> Airsnort [3], Kismet [4]

WEP - Hacking Demo

- Knoppix-CD [5] und Laptop mit unterstützter WLAN-Karte reicht!
- Demo-Szenario:

WLAN-Security

Alternative: IPsec

- IP Security: RFC 2401 Sicherheit auf Stufe IP-Layer
- 2 wichtige Protokolle
 - Authentication Header (AH) (RFC 2402)
 Daten-Integrität und Sender Authentizität
 - Encapsulating Security Payload (ESP) (RFC 2406) -> Verschlüsselung
- Basierend auf "Shared Key"
 - Internet Key Exchange (IKE) nötig (RFC 2409)
 - Asymmetrische Verfahren/Zertifikate

IPsec für Linux

- Kernel < 2.6
 - FreeSWAN-Implementation
 - erweiterte Versionen basierend auf FreeSWAN
 mit diversen Patches (StrongSWAN und OpenSWAN)
 - NAT Traversal
 - DHCP Relay
 - X509 Zertifikate
 - FreeSWAN-Entwicklung eingestellt seit Kernel 2.6
- Kernel >= 2.6
 - KLIPS (Kernel IPsec für ESP, AH, Paket-Handling)
 - Pluto (IKE Daemon) von OpenSWAN oder StrongSWAN

IPsec - Home WLAN Szenario

Einsatz im drahtlosen Heimnetzwerk

Linux IPsec Installation

- Kernel 2.6 mit folgenden Modulen
 - af_key, ah4, esp4, ipcomp, xfrm_user
 - Module für Verschlüsselung und Hash Alg.
- StrongSWAN (nur Pluto) (Details [6])
 - Makefile anpassen (falls gewünscht)
 - make programs
 - make install
- Zertifikate erstellen (IPsec-Howto [7])

Gateway IPsec Konfiguration

config setup

interfaces="ipsec0=wlan0"

conn %default

- keyingtries=1
- compress=yes
- disablearrivalcheck=no
- authby=rsasig
- leftrsasigkey=%cert
- rightrsasigkey=%cert

- # wlan0 symbolisch
- # für Device mit
- # Anschluss an AP

Gateway IPsec Konfiguration 2

conn roadwarrior-net

leftsubnet=0.0.0/0

also=roadwarrior

conn roadwarrior

left=192.168.1.1

leftcert=gateway.pem

right=%any

auto=add

pfs=yes

- # Gateway IP
- # jeder mit gültigem,
- # von CA ausgestelltem
- # Zertifikat darf

Client IPsec Konfiguration

config setup

interfaces=%defaultroute

conn %default

keyingtries=1

compress=yes

authby=rsasig

leftrsasigkey=%cert

rightrsasigkey=%cert

Client IPsec Konfiguration 2

conn roadwarrior-net

rightsubnet=0.0.0/0

also=roadwarrior

conn roadwarrior

```
right=192.168.1.1
```

rightcert=gateway.pem

rightid="C=CH, ST=Bern, L=Bern, O=LugBE, CN=GW"

left=%defaultroute

leftcert=linuxclient.pem

auto=add

Win2k/XP IPsec Installation

- Win2k/XP haben IPsec Stack
- Support Tools installieren
 -> Achtung WinXP SP2 [8]
- Zertifikate im *.p12 exportieren (Linux) und unter Windows importieren
- IPsec-Tool entpacken (DL + Infos [9])
 - -> konfiguriert Registry gemäss ipsec.conf (Syntax wie bei Linux)
- WinXP Firewall: UDP Port 500 erlauben

Windows IPsec Konfiguration

conn roadwarrior

left=%any

mac=11-22-33-44-55-66

right=192.168.1.1

rightca="C=CH,S=Bern,L=Bern,O=LugBE,CN=CA"

network=lan

auto=start

pfs=yes

Achtung: ST=Bern -> S=Bern (siehe auch [7] und [9]) mac ev. nötig, wenn mehrere Netzwerkkarten vorhanden

Windows IPsec Konfiguration 2

conn roadwarrior-net

left=%any

mac=11-22-33-44-55-66

right=192.168.1.1

rightsubnet=*

rightca="C=CH,S=Bern,L=Bern,O=LugBE,CN=CA"

network=lan

auto=start

pfs=yes

IPsec Tunnel starten

• Linux-Client

linux:~# ipsec auto --up roadwarrior
linux:~# ipsec auto --up roadwarrior-net

• Windows-Client

C:\Programme\IPsec\ipsec.exe ausführen (beispielsweise im Autostart)

Die ersten 1-4 (Ping-)Pakete lösen "Negotiating IP-Security" aus, dann steht die Verbindung.

- Was muss zugelassen werden?
 - Protokoll 50 (ESP) und 51 (AH) zulassen (das sind keine Ports!)
 - UDP-Port 500 zulassen
- Kernel 2.4 mit FreeSWAN erzeugt virtuelle ipsecX Devices
 - z.B. entspricht eth0 dem virtuellen ipsec0
 - Es kann jeglicher Verkehr über eth0 verboten, aber Pakete über ipsec0 zugelassen werden, somit haben nur Clients mit gültigem Zertifikat Zugriff zum Netzwerk/Internet.

• Kernel 2.6 ohne virtuelle ipsecX

- eingehendes ESP-Paket durchläuft die Hooks

LOCAL IN PRE ROUTING (Klartext) LOCAL IN/FORWARD (Klartext)

PRE ROUTING (verschlüsselt) (verschlüsselt)

- abgehendes ESP-Paket

LOCAL OUT/FORWARD (Klartext) POST ROUTING (Klartext) LOCAL OUT (verschlüsselt) POST ROUTING (verschlüsselt)

- Wie stellt man fest, ob ein eingehendes TCP/UDP-Paket vorher verschlüsselt war?
- Wie stellt man sicher, dass nur verschlüsselte Pakete versendet werden können?
- Iptables hat eine "mangle"-Table, Pakete können markiert und später auf die Marke hin überprüft werden.

Marke setzen:

iptables -t mangle -A PREROUTING -i \$WLAN DEV -p esp

-j MARK --set-mark 1

Marke prüfen: iptables -A FORWARD -i \$WLAN_DEV -o \$EXT_DEV -s \$WLAN_NET \ -m state --state NEW -m mark --mark 1 -j ACCEPT

Alle anderen neuen Verbindungen verbieten, etablierte und verwandte können zugelassen werden.

Analog für eingehende (INPUT) und für ausgehende (OUTPUT).

Links

- [1] http://www.ethereal.com/
- [2] http://sourceforge.net/projects/wepattack
 - http://sourceforge.net/projects/wepdecrypt
- [3] http://airsnort.shmoo.com/
- [4] http://www.kismetwireless.net/
- [5] http://www.knoppix.org/
- [6] http://www.stronswan.org/
- [7] http://www.natecarlson.com/linux/ipsec-x509.php
- [8] http://support.microsoft.com/default.aspx?scid=kb;en-us;838079
- [9] http://vpn.ebootis.de/